Asteroid (1341) Edmee occults star 3UC221-037195

Light curves of occulted star+Asteroid and comparison star

Date	2012/01/26											
Occultation start	18:41:18.12 UT											
Occultation end	18:41:21.25 UT											
Central time 18:41:19.69 UT												
Duration	3.13s											
Asteroid	(1341) Edmee, +15.3mag											
Occulted star 3UC221-037195, +12.7mag												
Comparison star	ar 3UC221-037206, +12.6mag											
Position	North 48° 47' 13.6" (WGS84) East 15° 14' 08.2" (WGS84) Height 546m (MSL) Nonndorf, 3830, Austria MPC C47											
Camera	WAT-120N CCIR Mode 4 (It=4 frames)											

The evaluation of the video record was done with software Tangra and Limovie. With both programs the resulting light curve showed a similar shape.

The shape of the R-curve showed a step at 26% level of the amplitude. So I had to make some further analysis about the reason for this curve step.

An accurate evaluation of the video with VirtualDub and the knowledge about the timing of the used video camera WAT-120N showed that this step is not real. It is artifical and it is caused by the used camera system and the star reappearance during the overlapping video field between two consecutive integration sequences.

The next page will give the explainations for this in some additional diagrams.

Star reappearance light curve in detail

Evaluation of video and timing in detail

Video camera WAT-120N exposure in mode 4 (integrating 4 frames or 8 fields)

The star real reappearance on sky happens instantaneous and full within exposure of field Q or q. * * * * * * * * * * * * * * * * *

	Integration sequence odd fields							Integration sequence odd fields								Integration sequence odd fields											
	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	
	а	b	С	d	е	f	g	h	i	j	k		m	n	0	р	q	r	S	t	u	v	W	х	у	Z	
 Integration sequence even fields									Integration sequence even fields								Integration sequence even fields										

The star is visible first in field Q or q. So in the odd fields integration sequence "I-P" the star signal is not recorded. In the even fields integration sequence "j-q" the star signal is recorded, but only in the last time part q.

Video camera WAT-120N alternating output signal of integrated odd and even sequences in mode 4 (integrating 4 frames or 8 fields)

A-H b-i A-H b-i A-H b-i A-H b-i A-H b-i I-P j-q I-P j-q I-P j-q I-P j-q I-P j-q Q-X r-y Q-X r-y Q-X

Frames recorded after VTI time stamp and USB video grabber digitizing

		285 286	287 288	289 290	291 292	293 294	295 296	297 298	299 300	301 302	303 304	305 306	
-	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame	Frame	
-													
Star signal contained in the video fields/frames							х	х	х	х Х	х х	х х	

So the star is visible with reduced brighness (the step) in three recorded frames (295/296, 297/298 and 299/300). After that the recorded star brightness is rising in frame 301/302. In integration sequences "Q-X" and "r-y" the star is recorded in full integration sequence length. From now on (303/304) the star is visible in full brightness in the recorded frames.

The star reappearance light curve confirms the artifical brightness steps caused by the integration sequence.

The conclusion of this should be always take a closer look on signal sequences in data or curves that are shorter in time than the integration time of the camera system. In this case the real event characteristic should be evaluated manually in single steps. So it is important to know how the used camera system is working.